Zeta functions and complexities of a semiregular bipartite graph and its line graph
نویسنده
چکیده
We treat zeta functions and complexities of semiregular bipartite graphs. Furthermore, we give formulas for zeta function and the complexity of a line graph of a semiregular bipartite graph. As a corollary, we present the complexity of a line graph of a complete bipartite graph. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
The semicircle law for semiregular bipartite graphs
We give the (Ahumada type) Selberg trace formula for a semiregular bipartite graph G: Furthermore, we discuss the distribution on arguments of poles of zeta functions of semiregular bipartite graphs. As an application, we present two analogs of the semicircle law for the distribution of eigenvalues of specified regular subgraphs of semiregular bipartite graphs. r 2003 Elsevier Science (USA). Al...
متن کاملBartholdi Zeta Functions for Hypergraphs
Recently, Storm [8] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it. We define the Bartholdi zeta function of a hypergraph, and present a determinant expression of it. Furthermore, we give a determinant expression for the Bartholdi zeta function of semiregular bipartite graph. As a corollary, we obtain a decomposition formula for the Bartholdi...
متن کاملContributions at the Interface Between Algebra and Graph Theory
In this thesis, we make some contributions at the interface between ‘algebra’ and ‘graph theory’. In Chapter 1, we give an overview of the topics and also the definitions and preliminaries. In Chapter 2, we estimate the number of possible types degree patterns of k-lacunary polynomials of degree t < p which split completely modulo p. The result is based on a rather unusual combination of two te...
متن کاملSharp upper bounds for the Laplacian graph eigenvalues
Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007